
SWE404/DMT413
BIG DATA ANALYTICS

Lecture 9: Classification and Regression Algorithms II

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my 

Office: A1-432 

Office hour: 2pm-4pm Mon & Thur



Outlines

¡ Decision Tree

¡ Ensemble Methods
¡ Random Forest

¡ Gradient Boosting Decision Trees

¡ XGBoost

1



DECISION TREE

2



Daily Life Example of Decision Tree

¡ Your friend wants to introduce you a 
boyfriend, because you have been single 
for a few years…

3

Age

Looks No!

OK~

<=30 >30

Handsome Normal

High Low
Income No!

No!Big Data 
Analyst

No!

Yes No



Steps of Building a Decision Tree

1. Select a feature.

2. Determine a value to split the feature.

3. Check if all the samples in each branch 
after split belongs to the same class.

a. Yes, we are done.

b. No, go back to step 1.

4

Age

Looks No!

OK~

<=30 >30

Handsome Normal

High Low
Income No!

No!Big Data 
Analyst

No!

Yes No



Entropy

¡ Entropy measures the uncertainty or purity of a system:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =,
!"#

$

−𝑝! log% 𝑝!

¡ 𝑐 is the number of events and 𝑝! is the probability that the 𝑖th event happens.
¡ For example when 𝑐 = 2

¡ The probability of tomorrow’s weather is 𝑃 𝑟𝑎𝑖𝑛𝑦 = 0.5, 𝑃 𝑠𝑢𝑛𝑛𝑦 = 0.5. Then 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 = 0.5 + 0.5 = 1.
¡ The probability of tomorrow’s weather is 𝑃 𝑠𝑛𝑜𝑤𝑦 = 0.0001, 𝑃 𝑠𝑢𝑛𝑛𝑦 = 0.9999. Then 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 = 0.00133 +

0.00014 = 0.00147.

¡ Entropy is related to the the amount of information:
¡ You don’t want to know if the sun will rise tomorrow. (small amount of information)
¡ You want to know if Lakers can beat Rockets tomorrow. (large amount of information)

5



Entropy

¡ Here, 𝑐 is the total number of classes or 
attributes and 𝑝! is number of examples 
belonging to the 𝑖th class.

¡ For this data, decision is the label with 
two classes.
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision
= −𝑝 Yes log! 𝑝 Yes − 𝑝 No log! 𝑝 No

= −
9
14 log! 𝑝

9
14 −

5
14 log! 𝑝

5
14 ≈ 0.940

6

Day Outlook Temp. Humidity Wind Decision

1 Sunny Hot High Weak No

2 Sunny Hot High Strong No

3 Overcast Hot High Weak Yes

4 Rain Mild High Weak Yes

5 Rain Cool Normal Weak Yes

6 Rain Cool Normal Strong No

7 Overcast Cool Normal Strong Yes

8 Sunny Mild High Weak No

9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes

11 Sunny Mild Normal Strong Yes

12 Overcast Mild High Strong Yes

13 Overcast Hot Normal Weak Yes

14 Rain Mild High Strong No



Information Gain

¡ Using entropy, the information gain can be calculated for selection of each feature 𝐴:

𝐺𝑎𝑖𝑛 𝑆, 𝐴 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑆 − B
"∈$%&'()(+)

𝑆"
𝑆
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆")

¡ For feature 𝐴, we calculate the entropy of each of its value 𝑣.
¡ For example, for feature Wind, we calculate 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(Decision|Strong) and 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(Decision|Weak).

7



Information Gain

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision|Strong
= −𝑝 Yes|Strong log% 𝑝 Yes|Strong − 𝑝 No|Strong log% 𝑝 No|Strong

= −
3
6
log% 𝑝

3
6
−
3
6
log% 𝑝

3
6

= 1
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision|Weak

= −𝑝 Yes|Weak log% 𝑝 Yes|Weak − 𝑝 No|Weak log% 𝑝 No|Weak

= −
6
8 log% 𝑝

6
8 −

2
8 log% 𝑝

2
8 ≈ 0.811

𝐺𝑎𝑖𝑛 Decision,Wind

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision −
6
14
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision|Strong +

8
14
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 Decision|Weak

= 0.940 −
6
14
×1 +

8
14
×0.811 ≈ 0.048

8

Day Wind Decision

1 Weak No

2 Strong No

3 Weak Yes

4 Weak Yes

5 Weak Yes

6 Strong No

7 Strong Yes

8 Weak No

9 Weak Yes

10 Weak Yes

11 Strong Yes

12 Strong Yes

13 Weak Yes

14 Strong No



Information Gain

9

Day Outlook Temp. Humidity Wind Decision

1 Sunny Hot High Weak No

2 Sunny Hot High Strong No

3 Overcast Hot High Weak Yes

4 Rain Mild High Weak Yes

5 Rain Cool Normal Weak Yes

6 Rain Cool Normal Strong No

7 Overcast Cool Normal Strong Yes

8 Sunny Mild High Weak No

9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes

11 Sunny Mild Normal Strong Yes

12 Overcast Mild High Strong Yes

13 Overcast Hot Normal Weak Yes

14 Rain Mild High Strong No

¡ Similarly, we can get:
𝐺𝑎𝑖𝑛 Decision,Wind = 0.048

𝐺𝑎𝑖𝑛 Decision, Outlook = 0.246
𝐺𝑎𝑖𝑛 Decision, Temp. = 0.029

𝐺𝑎𝑖𝑛 Decision, Humidity = 0.151
¡ As seen, outlook feature on decision produces the highest 

information gain. That’s why, outlook decision will appear 
in the root node of the tree.



Information Gain

¡ For each branch, we continue to select the 
feature with highest information gain, until 
each node contains only one class.

¡ The final decision tree is:

10

Day Outlook Temp. Humidity Wind Decision

1 Sunny Hot High Weak No

2 Sunny Hot High Strong No

3 Overcast Hot High Weak Yes

4 Rain Mild High Weak Yes

5 Rain Cool Normal Weak Yes

6 Rain Cool Normal Strong No

7 Overcast Cool Normal Strong Yes

8 Sunny Mild High Weak No

9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes

11 Sunny Mild Normal Strong Yes

12 Overcast Mild High Strong Yes

13 Overcast Hot Normal Weak Yes

14 Rain Mild High Strong No



Alternative Purity

¡ Entropy is only one of the purity criteria.

¡ Alternatives are:
¡ Gini index:

B
-./

0

𝑝-(1 − 𝑝-)

¡ Misclassification error:
1 − max

-
𝑝-

11



Decision Tree Pruning

¡ One of the questions that arises in a decision tree algorithm is the optimal size of the 
final tree. 

¡ A tree that can correctly classify all training data risks overfitting the training data 
and poorly generalizing to new samples. 

¡ Pruning should reduce the size of a decision tree without reducing predictive 
accuracy as measured by a cross-validation set. 

¡ There are many techniques for tree pruning that differ in the measurement that is 
used to optimize performance.

12



Decision Tree Regression

¡ Decision tree can be easily extend to do regression.

¡ We can simply replace the entropy with standard deviation to measure the uncertainty.

13

Imgae source: https://saedsayad.com/decision_tree_reg.htm

https://saedsayad.com/decision_tree_reg.htm


Deal with Continuous Feature

¡ Previou example is about categorical feature, while each categoty is a branch in the 
tree.

¡ When a feature is continuous, we should find a cutting point.

¡ A straightforward way is to try all the cutting points with different results and select 
one according to the purity criterion.

¡ For example, we have samples on age feature: (20, 29, 40, 45), we can take the 
cutting points by the midpoints (24.5, 34.5, 45).

14



Advantages and Disadvantages

¡ Advantages:
¡ Easy to understand and interpret.

¡ Require less effort for data pre-processing.

¡ Disadvantages:
¡ Too simple to use its own to predict.

¡ Can’t handle complex data.

15



MLlib API

¡ It supports both binary and multiclass labels, as well as both continuous and categorical features.
¡ Commonly used hyperparameter:

¡ maxDepth: Maximum depth of the tree.

¡ maxBins: Max number of bins for discretizing continuous features.
¡ minInstancesPerNode: Minimum number of instances each child must have after split. If a split causes the left or right child 

to have fewer than minInstancesPerNode, the split will be discarded as invalid.
¡ minInfoGain: Minimum information gain for a split to be considered at a tree node.

¡ impurity: Criterion used for information gain calculation. Supported options: entropy, gini.

16

Source: https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.classification.DecisionTreeClassifier

For regression: DecisionTreeRegressor

https://spark.apache.org/docs/latest/api/python/pyspark.ml.html


ENSEMBLE METHODS

17



Ensemble Methods

¡ The performance of a binary classifier is poorest if its accuracy is 0.5.
¡ 0.5 accuracy is just random guess.

¡ Accuracy 0.01 is equivalent to accuracy 0.99, by simply flip the prediction over (0->1, 1->0).

¡ A classifier with accuracy slightly higher than 0.5 is called a weak classifier.
¡ A pruned decision tree is usually a weak classifier.

¡ Assumption: Given many weak classifiers, we can combine them into a strong 
classifier.
¡ Is that possible?

18



Ensemble Methods

¡ The answer is YES!

¡ We can let them do majority voting. It is called 
ensemble. 

¡ Each classifier to construct the ensemble is called 
individual or base classifier.

¡ The necessary conditon is that, they should make 
different mistakes. The weak classifiers should be 
diverse.
¡ Ensemble of many classifier with the same error is 

useless.

19

Image source: https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe

https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe


Bagging

¡ Bagging, is short for bootstrap aggregating, is the aggregation of multiple versions of 
a predicted model. 

¡ Each model is trained individually, and the prediction is combined by averaging.

¡ As shown in the previous example, ensemble only works when the individual 
classifiers are diverse.
¡ How to make them diverse?

20



Bootstrapping

¡ Bootstrapping is the process of randomly 
sampling the data points with replacement.

¡ In such way, how many samples will be 
sampled if there are totally 𝑛 samples?

lim
"→$

1 − 1 −
1
𝑛

"
= 1 −

1
𝑒
≈ 0.632

¡ About two-thirds.

21



Bagging

¡ General steps of Bagging:
¡ The bootstrapped sample sets are first created. 

¡ Either a regression or classification algorithm is applied to each set. 

¡ Finally, make prediction by averaging
¡ For regression, an average is taken over all the outputs predicted by the individual learners. 

¡ For classification either the most voted class is accepted (hard-voting), or the highest average of all the 
class probabilities is taken as the output (soft-voting).

¡ Since classifier diversity is so important for ensemble, is there any way to produce 
more diversity?

22



Random Forest

¡ In Random Forest, along with the division of data, the features are also divided, and 
not all features are used to grow the trees. 

¡ This technique is known as feature bagging. Each tree has its own set of features 
allocated to it.

¡ Random Forest has the same steps as Bagging, except:
¡ When training each individual classifier, use only 𝑑’ of 𝑑 features (𝑑’ < 𝑑).

¡ Use decision tree as individual classifier.

23



Advantages and Disadvantages

¡ Advantages:
¡ Default hyperparameters used to give a good prediction.

¡ Solves the overfitting problem.

¡ It can be used as a feature selection tool.

¡ It handles high dimensional data well.

¡ Disadvantages:
¡ It is computationally expensive.

¡ It is difficult to interpret.

24



MLlib API

¡ It supports both continuous and categorical features.

¡ Commonly used hyperparameter:
¡ maxDepth, maxBins, minInstancesPerNode, minInfoGain, impurity: same as decision tree.

¡ numTrees: Number of trees to train (>= 1).

¡ subsamplingRate: Fraction of the training data used for learning each decision tree, in range (0, 1].

25

For regression: RandomForestRegressor



MLlib API

¡ featureSubsetStrategy: The number of features to consider for splits at each tree node (default = 
'auto’). Supported options: 

¡ 'auto' (choose automatically for task: If numTrees == 1, set to 'all'. If numTrees > 1 (forest), set to 'sqrt' for 
classification and to 'onethird' for regression), 

¡ 'all' (use all features), 

¡ 'onethird' (use 1/3 of the features), 

¡ 'sqrt' (use sqrt(number of features)), 

¡ 'log2' (use log2(number of features)), 

¡ 'n' (when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of 
features), use n features). 

26



MLlib Example

27



Boosting

¡ In Bagging, each individual classifier has the same weight in the ensemble, and is 
created in parallel.

¡ In contrast, boosting assigns different weights to each individual classifier, and is 
created in sequential.
¡ In each stage, introduce an individual classifier to compensate the shortcomings of existing 

individual classifiers.

28



AdaBoost

29

Image source: https://zhuanlan.zhihu.com/p/39920405

AdaBoost increases the weight of the samples that is misclassified in previous rounds.

https://zhuanlan.zhihu.com/p/39920405


Generalization of AdaBoost as Gradient Boosting

¡ The statistical framework cast boosting as a numerical optimization problem.
¡ The objective is to minimize the loss of the model by adding weak classifiers using a gradient 

descent like procedure.

¡ Just like updating weight by 𝒘 ← 𝒘− 𝜂∇𝐽 𝒘 , while now ∇𝐽 𝒘 is a new weak classifier.

¡ Gradient boosting involves three elements:
¡ A loss function to be optimized.

¡ A weak classifier to make predictions.

¡ An additive model to add weak classifiers to minimize the loss function.

30



Gradient Boosting Decision Trees

¡ Loss Function
¡ The loss function used depends on the type of problem being solved.

¡ It must be differentiable.

¡ Weak Classifier
¡ Decision trees are used as the weak classifier in gradient boosting. Therefore, it is usually called Gradient 

Boosting Decision Trees (GBDT).

¡ Additive Model
¡ Trees are added one at a time, and existing trees in the model are not changed.

¡ A gradient descent procedure is used to minimize the loss when adding trees.

31



Advantages and Disadvantages

¡ Advantages:
¡ Often provides predictive accuracy that cannot be beat.

¡ Lots of flexibility - can be used to solve almost all derivable objective function.

¡ Disadvantages:
¡ More sensitive to overfitting if the data is noisy.

¡ Training generally takes longer because of the fact that trees are built sequentially.

32



MLlib API

¡ It supports both continuous and categorical features.
¡ Commonly used hyperparameter:

¡ maxDepth, maxBins, minInstancesPerNode, minInfoGain, impurity, subsamplingRate: same as random 
forest.

¡ lossType: Loss function which GBT tries to minimize. Supported options: logistic.

¡ GBDT automatically determines the number of trees in ensemble by checking its 
convergence. Thus, we don’t have hyperparameter numTrees.

33

For regression: GBTRegressor



MLlib Example

34



XGBoost

¡ XGBoost stands for eXtreme Gradient Boosting.
¡ It is the most powerful machine learning model before the age of deep learning.

¡ It wins almost every kaggle competition.

¡ It is still used in many IT companies now.

¡ XGBoost is based on GBDT but with more generalized configurations for real industry 
applications.

¡ If you are struggling in selecting models, try XGBoost first!

35



XGBoost

¡ Both XGBoost and GBDT follows the principle of gradient boosting. There are 
however, the difference in modeling details. 
¡ Regularization: XGBoost has regularization module to reduce overfitting while standard GBDT 

implementation doesn’t have. In fact, XGBoost is also known as a ‘regularized boosting‘ technique.

¡ Parallel Processing: XGBoost implements parallel processing and is blazingly faster as compared to 
GBDT.

¡ High Flexibility: XGBoost allows users to define custom optimization objectives and evaluation 
criteria.

¡ Handling Missing Values: XGBoost has an in-built routine to handle missing values.

36



XGBoost

¡ If you are interested in XGBoost, I highly suggest you to read the original paper.

¡ For a more comprehensive discussion of XGBoost, you can read this master thesis:

37



XGBoost in Spark

¡ XGBoost is not officially supported by PySpark.

¡ You can use the scala version of Spark with package XGBoost4J-Spark.

¡ A good alternative of XGBoost is LightGBM, whose performance is as good as 
XGBoost.
¡ Follow https://github.com/Azure/mmlspark/blob/master/docs/lightgbm.md.

38

https://github.com/Azure/mmlspark/blob/master/docs/lightgbm.md


MACHINE LEARNING RELATED ISSUES

39



Hyperparameter Tuning

¡ Almost every model has some hyperparameters.
¡ 𝐶 and 𝜆 in SVM.

¡ Number of layers and neurons on each layer in neural networks.

¡ Number of trees and size of feature subset in random forest.

¡ For different datasets, the best hyperparameters are different.
¡ We need to select them by trial and error.

¡ This process is called hyperparameter tuning or model selection.

40



Parameter Tuning

¡ However, we can’t select hyperparameters based on the performance on the test 
data.
¡ It is like cheating if you know questions and answers of the final exam and then adjust your study 

plan.

¡ Generally, we have two strategies:
¡ K-fold cross validation.

¡ Fixed validation set.

41



K-Fold Cross Validation

¡ We cut the training data into K folds, where
¡ K-1 folds are used for training.
¡ 1 fold is used for validation.
¡ Repeat K times with different combinations and select the parameter with the highest average 

performance.

¡ For example, 3-fold cross validation will separate the training data into 5 folds.
¡ Train on fold [1, 2] and test on [3].
¡ Train on fold [1, 3] and test on [2].
¡ Train on fold [2, 3] and test on [1].

¡ After selecting the best hyperparameters, train the model again with all training data.

42



Fixed Validation Set

¡ If the dataset is large enough, we can fix the training/validation/test data.
¡ 8-1-1 split is usually adopted.

¡ In this way, we can compare training/validation/test error, because the size of 
training data is same.
¡ The data size used for training in cross validation is actually shrinked.

43



Grid Search

¡ If you have only one hyperparameter, simply try all the values you want.
¡ Learning rate in logistic regression: [0.0001, 0.001, 0.01, 0.05, 0.1, 0.5].

¡ If you have multiple hyperparameters, we should try all the combinations of them. 
This is called grid search.
¡ Learning rate in logistic regression: [0.0001, 0.001, 0.01, 0.05, 0.1, 0.5].

¡ Regularization parameter: [0.001, 0.01, 0.1, 0, 1, 10, 100]

¡ Totally 6×7 = 42 combinations should be tried.

44



General Strategy for Multiclass Classification

¡ If a classifier can only handle binary classification, e.g. logistic regression or SVM, we 
can also make them able to do multiclass classification.

¡ Two strategies:
¡ One-Vs-Rest (OVR)

¡ One-Vs-One (OVO)

45



One-Vs-Rest for Multiclass Classification

¡ Split the multiclass dataset into 𝑐 binary classification problems. 

¡ For example, given a multiclass classification problem with examples for each class 
‘red,’ ‘blue,’ and ‘green‘. This could be divided into three binary classification datasets 
as follows:
¡ Binary classification problem 1: red vs [blue, green],

¡ Binary classification problem 2: blue vs [red, green],

¡ Binary classification problem 3: green vs [red, blue].

¡ The final prediction is made by selection of the class with highest probability.

46



One-Vs-One for Multiclass Classification

¡ Split the multiclass dataset into 𝑐(𝑐 − 1)/2 binary classification problems. 
¡ For example, consider a multiclass classification problem with four classes: ‘red,’ ‘blue,’ and 

‘green,’ ‘yellow.’ This could be divided into six binary classification datasets as follows:
¡ Binary classification problem 1: red vs. blue
¡ Binary classification problem 2: red vs. green
¡ Binary classification problem 3: red vs. yellow
¡ Binary classification problem 4: blue vs. green
¡ Binary classification problem 5: blue vs. yellow
¡ Binary classification problem 6: green vs. yellow

¡ The final prediction is made by majority voting.

47



Evaluation Metric

¡ Evaluating your machine learning algorithm is an essential part of any project.

¡ For different applications, we may adopt different evaluation metrics.

¡ Most of the times we use classification accuracy to measure the performance of our 
model, however it is not enough to truly judge our model.

48



Classification Accuracy

¡ Classification accuracy is what we usually mean, when we use the term accuracy. 
¡ It is the ratio of number of correct predictions to the total number of input samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒

¡ However, sometimes accuracy cannot well reflect the performance.
¡ Consider training a disease diagnose system that there are 98% samples of healthy people and 2% 

samples of patients in our training set. 

¡ Then our model can easily get 98% training accuracy by simply predicting every training sample as 
healthy.

49



Confusion Matrix

¡ Confusion Matrix as the name suggests gives us a matrix as output and describes the 
complete performance of the model.

¡ Confusion Matrix forms the basis for the other types of metrics.

50

Ground Truth

Prediction

Positive (sick) Negative 
(healthy)

Positive (sick) True Positive 
(TP)

False Positive 
(FP)

Negative 
(healthy)

False Negative 
(FN)

True Negative 
(TN)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁



Precision and Recall

¡ Precision refers to how much of your positive predictions are correct. It doesn’t care if you 
cover all of the positive samples.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 .

¡ For the previous example, if you only predict one sample as sick and it is correct, the precision will be 1.

¡ Recall (aka sensitivity, TPR) refers to how much of your positive samples are correctly 
classified. It doesn’t care how many positive predictions you make.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
.

¡ For the previous example, if you predict all of the samples as sick, the recall will be 1.

51



F1 Score

¡ Therefore, a good classifier should take a balance between precision and recall.

¡ We use F1 score to measure this trade-off. It is the harmonic mean of precision and 
recall.

𝐹1 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 .

¡ F1 score will be high only if both precision and recall be high.
¡ One of them is close to 0 will make F1 score close to 0.

52



Receiver Operating Characteristic

¡ Another trade-off can be made between TPR (recall) 
and FPR.

𝑇𝑃𝑅 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
, 𝐹𝑃𝑅 =

𝑓𝑝
𝑓𝑝 + 𝑡𝑛

.

¡ By moving the threshold for binary classification, the
change of TPR and FPR can be drawn in a figure. It is
called Receiver Operating Characteristic (ROC).

¡ Usually, we calculate the Area Under Curve (AUC) of
ROC to compare.

53

Image source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Conclusion

After this lecture, you should know:
¡ How to build a decision tree.

¡ Why weak classifier can be combined to become strong classifier by ensemble.

¡ What is the difference between bagging and boosting.

¡ How to tune hyperparameters.

¡ What are the common used evaluation metrics.

54



Assignment 3

¡ Assignment 3 is released. The deadline is 18:00, 15th June.

55



Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

56


